Journey-mapping in the science classroom

Hi, everyone!  It’s been a while.  Here’s some updates on things I’ve been thinking about in my classroom and my graduate program.

Back in November, I went to a workshop with the fabulous Deb Morrison, a professor at the University of Washington College of Education.  The focus was on activities and practices that increase equity in the science classroom.  I left with a number of amazing tools, which are cataloged in this Google Doc which you should feel free to use and distribute, with attribution!  The one I want to focus on today is “The Path Here – Educational Journey Maps.”

As a part of the activity, students are asked to map out the “key events, people or things in your life that have contributed to your science education.”  This allows students to examine the ways they have been encouraged or discouraged in science, provides information to teachers about students’ personal relationships with science topics, and allows students to see trends in the ways different students have engaged with science in the past/reflect on how that impacts students’ current work and sense of belonging in the classroom.

I hope to use this with my students next fall, but as an experiment, I decided to create my own journey map of how I came to be a science teacher.  Here’s what I have so far:

IMG_1087.JPG

Until I completed the activity, I would never have noticed a few striking trends:

  • Middle school is basically absent from my timeline – it is like a gap in my experience of education.  Many of my middle school memories have been blocked out, in large part because of hormones (or at least that’s my theory)
  • I have had very few positive relationships with science teachers.  With the exception of two or three college professors and my 5th grade teacher, no conventional science teacher has really had a positive relationship with me as a student.  This is striking, given how much I enjoy teaching science now.
  • I had a lot of pressure growing up to become a scientist, and I was very resistant to that pressure.  My mother’s parents were both scientists, and I was a bright student as a kid, and as a result I was pushed hard into STEM topics.  As a result, I pushed hard back.  Especially as a school-aged girl, I felt like there was an expectation that I would go into STEM to break stereotypes about women in those fields.
  • Interestingly, I spent a lot of my free time as a kid working on STEM-related projects, like taking apart electronics, spending time in the woods, and learning to identify birds.  However, I never really got to connect those passions to the work we were doing in classroom science until I got to college.  I spent a lot of high school avoiding science by testing out of those classes based on knowledge I had from reading and being cared for by my grandparents.  As a result, my best connections are with humanities teachers who allow me to pursue topics of interest and push me to critically think about issues of justice and representation.

Based on this work, I included a question about teachers’ paths to science on a recent interview done with 6 teachers in my professional learning community.  I was working on some interview practice for an upcoming research capstone in my graduate program, and was asking teachers to reflect on their inclusive practices in their classrooms.  Below is a table summarizing those teachers’ responses to thinking about moments when they were especially included or excluded from the grade school science classroom:

Table 2

The most striking trend I noticed was in teachers discussing a specific project, paper, or lab that drew them into the practice of science.  One teacher described breeding a specific kind of fruit fly on her own using multiple generations of reproduction and her knowledge of genetics.  Another talked about a paper written in a seminar that she had worked especially hard on that had been appreciated by her professor.

As I enter into leading a long-term research project for the first time as a science teacher, I am excited to try and create this sense of excitement, personal investment, and challenge for my students.  It would not have occurred to me before completing this exercise that this could be listed as an inclusive practice within science teaching, but it is clear that both in the experience and teaching of science content, having authentically engaging and challenging independent tasks is a keystone for many students’ ability to see themselves belonging in that space.  More to come on how that plays out in the near future!

What are the key moments from your own STEM education that led you to feel included or excluded in that space?  Share in the comments!

Fighting impostor syndrome by providing meaningful feedback

Let’s talk for a minute about impostor syndrome.

For any teacher, this phenomenon will be present to some extent, but in STEM it is especially dangerous for female-identified students and students of color.  There are many responses to impostor syndrome, including creating safe community within your institution for underrepresented groups, discussing the challenges facing those who aren’t well-represented in their chosen fields, and decreasing language that activates stereotype threat.

However, one article I read last year by Beth Andres-Beck stood out in its approach to battling stereotype threat: providing clear, direct feedback that is backed up by concrete evidence.  The author writes about working in various coding environments where insufficient feedback (positive or negative) created a vacuum in which the particular coder could insert whatever self-image they wanted: being the best coder in the world, or conversely, being the least qualified coder of all time.

The trap of impostor syndrome in this scenario is that by choosing to believe that you are an unqualified coder but continuing to work as one creates an urgent need to hide whatever it is that you are doing.  This cycle of perpetuating lack of authentic feedback constructs a fragile identity as an impostor – one that even occasional evaluation can’t break through.

“The genius of imposter syndrome is…we don’t have to disregard when we fall short, for such failures fit our internal narrative.  …When we succeed, we can believe it is part of our act.  Look how well I have fooled everyone by doing work they think is good!  …We have trouble accepting real feedback, since any feedback is based on our facade and we “know” better.  Imposter syndrome also brings with it anxiety and shame, preventing us from feeling the thrill of accomplishment when we do succeed.  It robs us of the joy we earn.”

As a teacher reading the article, it was impossible not to wonder how I create such vacuums of authentic feedback in my own assessments.  And when choosing between the three options of self-concept in an environment with insufficient feedback – good science student, bad science student, and bad science student who everyone believes to be a good science student – it is clear from personal experience that the latter two are usually the perspectives taken by my female students and my students of color.

In response, I am trying to collect tools that will enable me to provide detailed feedback to my students, either from me as a teacher or from peer assessment, that is clear, authentic, and non-threatening.  Below I have listed a few possible strategies – if you have other ideas, please chime in!

  • Frequent formative assessment By using formative assessment probes on a regular basis, students will receive feedback about their own learning in a timely, non-threatening manner.  I highly recommend the work done by Page Keeley on FA in both science and mathematics – her book “Science Formative Assessment” was one of the first texts that got me motivated to become a science teacher.
  • Using detailed rubrics Though writing narrative comments are often more specific and useful, having rubrics that link to the targets for a specific assignment makes it easier for teachers to provide detailed feedback on many assignments in a timely, meaningful manner.  Provide rubrics when the assignment is given (not just at the end) and add specific detail so that students understand the goals set for the assignment.  There are great resources on rubrics at the Buck Institute for Education, which focuses on best practices for Project-Based Learning.
  • Anonymous peer assessment & online discussion The “anonymous” piece of this is incredibly important, when it is feasible.  By creating spaces where students can give feedback to each other/engage with each other without knowing the recipient’s identity, they are less likely to base their comments on their concept of the student receiving the feedback.  Especially given that male students are more likely to be rated as “smart” by their classmates, this is incredibly important to the process for everyone involved.  Anonymous online discussions (see STEMming the confidence gap) are also shown to promote comfort for female students and create parity in male and female participation in discussions.
  • Focus on learning targets Instead of highlighting how smart a student is or their effort, provide feedback specific to the learning targets of the assignment.  Frame your feedback as how the student is or is not meeting the goals of the assignment or unit, and if there is a gap, how it can be successfully bridged by the student.  This is a natural outcropping of standards-based grading, which many schools and districts have adapted more and more to provide more meaningful, learning-focused assessment to students.

What ideas do you have to add to this list?  Other thoughts on fighting impostor syndrome?  Leave them in the comments!